Skip to main content
Search form
  • お問合せ
  • 資料一覧
  • 採用情報
  • IR情報
  • 技術資料
ESI Group - Home
  • Virtual Prototyping
    Building the Virtual Prototype Enabling the Factory of the Future Delivering the Hybrid Twin™
  • 製品情報
    Virtual Manufacturing
    鋳造 複合材成形 プレス成形 溶接組立て Additive Manufacturing Plastics
    Virtual Performance
    Virtual Performance Solution シート製造・快適性 振動・音響
    Virtual Environment
    熱流体・マルチフィジクス 電磁波 バーチャルシステム / コントロール
    Virtual Integration Platform
    シミュレーション プラットフォーム シミュレーション データ管理
    Virtual Reality
    製造業向けVRシステム IC.IDO
    Data Analytics
    Simulation Data Analytics Cyber Security Design Space Exploration
    System Modeling
    マルチドメイン・1D シミュレーション SimulationX
  • エンジニアリングサービス
    エンジニアリングサービス テクニカルサポート ユーザー様向け技術資料 トレーニング一覧
  • 産業別ソリューション
    航空宇宙・防衛 電気・電子 エネルギー 自動車・輸送機器 機械・重工 船舶・海洋
  • 企業・IR情報
    会社概要 導入事例 ニュース イベント パートナー IR情報 採用情報 アクセスマップ
  • Home >
  • 製品情報 >
  • Virtual Environment >
  • 電磁波 >
  • CEM One >
  • Multilevel Fast Multipole Method (MLFMM)
製品情報
  • Virtual Manufacturing
  • Virtual Performance
  • Virtual Performance Solution
  • Virtual Environment
    • 熱流体・マルチフィジクス
    • 電磁波
      • CEM One
        • アプリケーション
        • 導入事例
        • 資料一覧
      • バーチャルシステム / コントロール
    • Virtual Integration Platform
    • Virtual Reality
    • シート製造・快適性
    • Data Analytics
    • 振動・音響
    • System Modeling

    お問合せ

    お問合せ
    シェア シェア
    印刷する Email Facebook Twitter Linkedin

    Multilevel Fast Multipole Method (MLFMM)

    For applications involving electrically large structures such as antenna installation analysis, radar cross section analysis or reflector antenna design the MLFMM approach can be used to reduce the numerical complexity. In many cases the MLFMM is the only method available on the market that can solve these problems with sufficient accuracy.

    Description of method

    The MLFMM is used to speed up matrix-vector multiplications which are the dominating operation in the iterative solver used in the EfieldFD MLFMM solver to solve the MoM matrix system. When using a MLFMM technique the solution time is proportional to Niter N log(N) and the memory requirement is proportional to N log(N), where N is the number of unknowns in the matrix system and Niter is the number of iterations in the iterative solver. This should be compared to MoM where solution time is proportional to N3 and memory requirement is proportional to N2. It is clear that by using MLFMM orders of magnitude are saved both in solution time and memory need.

    MLFMM is based on 3D partition of the object into boxes. The object is placed in a box which is split in 8 smaller boxes. Each of the boxes are then divided again recursively until the size of the smallest box only contains a few basis functions. Non-empty boxes are not stored so the tree structure is sparse.

    Using the MLFMM partition of the object into boxes of different size at different levels a fast matrix-vector multiplication can be computed. The near field interactions are calculated at once by standard MoM. The far-field interactions are calculated iteratively by traversing the tree structure (upward and downward pass) and use an operator to translate radiated fields at the box centers into incoming fields for the other boxes. Using the MLFMM the complexity in the matrix-vector multiplication is reduced significantly compared with MoM.

    Solver features

    Fast Monostatic RCS computation using MRI

    The MLFMM solver use the MRI (Minimal Residual Interpolation) method that reduces the number of iterations in the iterative MLFMM solver for multiple right hand sides such as in case of monostatic RCS computations. The MRI method computes an optimal initial guess of the solution of a particular right hand side used by the iterative solver. The initial guess is based on previously computed solutions and is optimal in the sense that the residual of the initial guess is minimized. Given an optimal initial guess the number of iterations in the iterative MLFMM solver is drastically reduced with great savings in solution time. After a certain number of solutions have been computed the remaining solutions can be computed by pure interpolation.

    Fast Frequency Sweep using MRI

    The MRI method used for monostatic RCS computations are also used to speed up frequency sweeps with large savings in solution time. Typical applications are to compute the gain of large antennas as function of frequency or RCS computations as function of frequency.

    Integral equation formulations

    In the EfieldFD MLFMM solver different integral formulations are available that improves accuracy and decrease solution time. Available formulations include EFIE, MFIE and CFIE for perfectly electric conductors, PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) formulation for problems involving both perfectly electric conductors and dielectric or magnetic bodies.  There is also a new CFIE based formulation combining PMCHWT and Muller formulations for problems involving both perfectly electric conductors and dielectric or magnetic bodies with outstanding convergence properties.

    CEM One features the following components:

    • 3D/MTL Coupling Procedures
    • CRIPTE
    • Efield Frequency-Domain Solvers
    • Efield MoM/MLFMM-PO Hybrid solver
    • Efield Multi-Domain Multi-Method (MDMM)
    • Efield Time-Domain Solvers
    • Multilevel Fast Multipole Method (MLFMM)
    • PAM-CEM/FD

    QR code

    Page URL:
    https://jp.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one/multilevel-fast-multipole-method-mlfmm
    Permanent link to the page:
    https://jp.esi-group.com/node/1863
    • Virtual Prototyping
      Building the Virtual Prototype Enabling the Factory of the Future Delivering the Hybrid Twin™
    • 製品情報
      Virtual Manufacturing Virtual Performance Virtual Environment Virtual Integration Platform Virtual Reality Data Analytics System Modeling
    • エンジニアリングサービス
      エンジニアリングサービス テクニカルサポート ユーザー様向け技術資料 トレーニング一覧
    • 産業別ソリューション
      航空宇宙・防衛 電気・電子 エネルギー 自動車・輸送機器 機械・重工 船舶・海洋
    • 企業・IR情報
      会社概要 ニュース イベント パートナー IR情報

    ESI Japan Ltd. Headquarters

    Location Map 地図で見る
    Phone 03-5331-3830 03-5331-3830
    Fax 03-5331-3836
    Address 28F Shinjuku Front Tower. 2-21-1, Kita-Shinjuku, Shinjuku, Tokyo, Japan,169-0074
    • プライバシー・利用規約
    • Legal
    • Cookie settings
    • Glossary
    • © ESI Group 2021
    • Facebook
    • Twitter
    • YouTube
    • LinkedIn
    • news RSS

    Version: Desktop | Mobile