Efield Time-Domain Solvers
Due to its computational efficiency and parallelization it is possible to use the Efield time-domain solvers for both small and large problems in a wide range of applications such as finite antenna arrays, on-chip embedded passives, IC packages, lightning and EMC/EMI.
Time-domain modeling has the advantage of providing broadband results, for example S-parameters and far-field, in a single simulation using pulse excitation. Furthermore, 3D visualization of the time evolution of fields and currents can often give deeper understanding of electromagnetic effects in complicated environments.
Solver modes
The solver modes available in EfieldTD are the FDTD mode and the FDTD-FEM hybrid mode.
The FDTD mode
The Efield FDTD method is the basic time-domain solver which is multi-block parallelized on a Cartesian grid. Functionality includes plane waves, waveguide ports, voltage sources, S-parameter computation and a range of far-field transforms which makes the Efield FDTD method well suited for broadband analysis of microwave and antenna problems.
The hybrid FDTD-FEM mode
Efield is the first commercial software vendor offering a hybrid FDTD-FEM solver allowing unstructured grids for modeling complex geometries and small details, together with a structured grid for the rest of the domain. The Efield hybrid FDTD-FEM solver combines a parallel FDTD solver on a Cartesian (structured) grid with a FEM solver on unstructured grids. The underlying philosophy is to take advantage of the strengths of the individual solvers without suffering from their weaknesses. The FEM solver enables accurate modeling of complex geometries through the use of body-conforming unstructured grids, while the FDTD solver enables optimal performance in homogeneous regions.
The hybrid solver allows local spatial refinement of the unstructured grids to resolve geometrical details or to model field singularities near sharp corners, edges or points. Stability is guaranteed through a careful design of the coupling of the FDTD and FEM solvers.
Hybrid meshing
The generation of the Efield hybrid grid is an automatic process that gives the user the option to choose which type of grid that should be used for different parts of the geometry. An important feature is that there may be several disconnected unstructured grids in the same problem.
Multi-block solver
The Efield FDTD and hybrid FDTD-FEM solvers are parallelized using MPI multi-block technique. An optimal load balance is calculated and used for solving the problem based on the hardware regarding number of FLOPS, communication bandwidth and memory per processor.